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Polygonal shape transformation processes observed in liposomes@H. Hotani, J. Mol. Biol.178, 113~1984!#
have been analyzed on the basis of the Helfrich spontaneous curvature model. First, a mathematical solution
for the biconcave axisymmetric vesicles@H. Naito, M. Okuda, and Z. Ou-Yang, Phys. Rev. E47, 2304~1993!#
is derived, and then the second variation of the shape energy of the slightly deformed vesicles from the
biconcave shape is calculated. After the minimization of the shape energy, it is found that the biconcave vesicle
is transformed into elliptical, triangular, square, pentagonal, or other polygonal shapes above the threshold
osmotic pressure difference. At a constant value ofDV/V0, the osmotic pressure is found to be a monotonic
increasing function ofm, except form52, whereV0 is the initial volume of the biconcave vesicle,DV is the
change in the volume of the deformed vesicle, andm denotesmth polygonal deformation. It is shown that the
experimental results of the polygonal shape transformation in liposomes can be well explained by the present
theoretical predictions.@S1063-651X~96!09909-6#

PACS number~s!: 87.22.Bt, 82.65.2i, 68.15.1e, 46.30.2i

I. INTRODUCTION

Recently, both experimental and theoretical aspects of
amphiphile bilayers and monolayers have gathered much at-
tention from physicists and chemists@1#. Amphiphilic mol-
ecules, such as phospholipids, are often assembled into bi-
layers that form single shells called vesicles because of the
repulsive interaction between the hydrocarbon chains of lipid
and water molecules. These structures are regarded as simple
models for biomembranes and cells@2–5#. A great success in
this field is the understanding of the role of the bending
elasticity for both equilibrium shapes and their fluctuations
of fluid membranes@1#.

The shape transformations of the vesicles can be induced
by changing external parameters, such as temperature@6# and
osmotic pressure@7#. One of the most interesting problems in
this context is the transformation pathways of liposomes re-
ported by Hotani@7#. He has shown with the dark-field mi-
croscope that liposomes whose initial shapes are circular bi-
concave transform into elliptical, triangular, square, or
pentagonal shapes, as schematically illustrated in Fig. 1, and
has concluded that the driving force for the transformations
is osmotic pressure. Since these transformation pathways
have also been found in biological membrane vesicles, such
as vesicles derived from human red blood cell~RBC! ghosts
after digestion of surface membrane proteins by trypsin, the
transformation is a general intrinsic property of lipid mem-
branes and hence is a theoretically important issue.

Sekimura and Hotani@8# have numerically explained the
shape transformation pathways on the basis of the Canham
model, which does not include spontaneous curvature@9#.
However, their approach has two principal weak points.
First, the Canham model predicts two shapes having the
same minimum energy, a dumbbell-like shape and a bicon-
cave shape; the former shape has not been found in RBCs
@2#. Second, a modified Cassini equation was employed as

the initial biconcave shape, but is apparently different from
the real biconcave shape of RBCs@10#. To overcome the first
weak point, Helfrich@11# has shown the importance of spon-
taneous curvature and has developed a phenomenological
theory for the elasticity of fluid membranes by analogy with
the curvature elasticity of liquid crystals. The spontaneous
curvature in this model likely results from the asymmetric
molecular distribution between the inner and the outer mono-
layer of membranes. Deuling and Helfrich have shown that

FIG. 1. Schematic illustration of polygonal shape transformation
pathways of liposomes by osmotic dehydration@7#. The liposomes
having circular biconcave shape whose side and top views are
shown in ~a! are transformed into~b! elliptical, ~c! triangular,~d!
square or~e! pentagonal shapes.
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the RBCs under normal physiological conditions have nega-
tive spontaneous curvature@12#. Since this model has been
widely used for the study of amphiphile monolayers and bi-
layers @4#, the theoretical analysis of the polygonal shape
transition should be based on the Helfrich spontaneous cur-
vature model. The theoretical analysis has already been car-
ried out by Kawakatsu, Andelman, Kawasaki, and Taniguchi
@13#. They numerically studied polygonal shapes of vesicles
having two component membranes, and their calculation was
based on the shape equation by Seifert, Berndl, and Lip-
owsky @14#, which is different from the shape equation de-
rived from the Helfrich model@15#.

In this paper, we apply the Helfrich spontaneous curva-
ture model to the analysis of the shape transformation of
liposomes having the polygonal symmetry observed by Ho-
tani @7#. In Sec. II, using the shape equation for the axisym-
metric vesicles derived originally by Hu and Ou-Yang@15#,
an analytical solution to the shape equation@15# is derived
under the conditions of no surface tension and no osmotic
pressure difference, which have been derived from the fun-
damental principle of surface chemistry for phospholipid
vesicles in an aqueous medium@16#. It is demonstrated that
the solution is a circular biconcave discoid in the case of
negative spontaneous curvature. Hence, the biconcave solu-
tion is suitable for the initial shape of the polygonal shape
transformation. Section III presents the calculation of the
second variation of the shape energy of the vesicle having
slight distortion from the initial biconcave solution using the
general formula for the stability analysis of equilibrium
shape given by Ou-Yang and Helfrich@17#. Section IV de-
rives and solves the Euler-Lagrange equation for the second
variation formula in the polygonal deformation mode. Sec-
tion V discusses the present theoretical results. It is found
that the theoretical results are in good agreement with those
of the experiment. Section VI concludes the article.

II. A SOLUTION FOR BICONCAVE VESICLES

In the Helfrich spontaneous curvature model, the equilib-
rium shape of a vesicle is determined by the minimization of
the shape energy, which is

F5~k/2! R ~c11c22c0!
2dA1DpE dV1l R dA,

~2.1!

wherek, c1 andc2, andc0 are the bending rigidity, the two
principal curvatures and the spontaneous curvature, respec-
tively. Since we consider the vesicles with spherical topol-
ogy here, the additional Gaussian curvature energy term
k̄rc1c2dA in the original expression of the bending energy
@11# is equal to 4p k̄ and has been neglected in Eq.~2.1!,
wherek̄ is the Gaussian curvature modulus. The second and
third terms in Eq.~2.1! either take into account the con-
straints of constant volume and area or represent actual work.
Depending on the considered situation, the two parameters
Dp andl serve as Lagrange multipliers or the actual osmotic
pressure difference between outer and inner media
~Dp5pout2pin! and the tensile stress, respectively.

Instead of the spontaneous curvature, the bilayer couple
model @18# introduced the constraint of the area difference
between outer and inner monolayers of a membrane by

gDA, whereg is an additional Lagrange multiplier. How-
ever, the simple derivation@see Eq.~19! in Ref. @17## shows
that for a uniform membrane the area differenceDA can
always be written as

DA5 R @ t~c11c2!1t2c1c2#dA1O~ t3!, ~2.2!

wheret is the thickness of the bilayer. It is evident that the
gDA term can be incorporated in thec0 and k̄ values in Eq.
~2.1!. Thus we should stress that the bilayer couple model is
essentially identical to the Helfrich spontaneous curvature
model.

Since the Helfrich shape energy, Eq.~2.1!, is a complete
combination of linear and quadratic invariants of the surface
curvaturesc1 andc2, the minimization of Eq.~2.1! generates
a variety of surfaces in the Euclidean space. For the descrip-
tion of such surfaces, a general shape equation of equilib-
rium vesicles has been derived from the first variation of Eq.
~2.1! by using general rules of differential geometry and im-
posing the closed condition of the surface of vesicles, and is

Dp22lH1k~2H1c0!~2H
222K2c0H !12k¹2H50,

~2.3!

whereK5c1c2 and H5(21/2)(c11c2) are the Gaussian
and the mean curvatures, respectively, and¹2 is the Laplace-
Beltrami operator@19#.

Only axisymmetric equilibrium shapes of vesicles have
been extensively studied with numerical methods so far
@14,20#. In this study, we use the general shape equation for
axisymmetric vesicles that has been derived from Eq.~2.3!
by Hu and Ou-Yang@15# and that is a third-order differential
equation ofc~r!,

cos3 cS d3cdr3 D 54 sinc cos2cS d2cdr2 D S dc

dr D 2coscS sin2c
2

1

2
cos2c D S dc

dr D 31 7 sinc cos2c

2r S dc

dr D 2
2
2 cos3c

r S d2cdr2 D 1Fc0222
2c0sinc

r
1

l

k

2
sin2c22 cos2c

2r2 GcoscS dc

dr D
1FDp

k
1

l sinc

kr
1
c0
2 sinc

2r

2
sin3c12 sinc cos2c

2r3 G , ~2.4!

wherer is the distance from the symmetric axis~z axis! of
rotation,c~r! is the angle made by the surface tangent, and
ther axis as shown schematically in Fig. 2. In this case, we
have the following relations:

dz

ds
5sinc ~2.5!

and
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dr

ds
5cosc, ~2.6!

wheres is the arc length of the vesicle with axisymmetry.
The vesicle surface is hence represented by the vector
YW (s,f) in Euclidean space as

YW ~s,f!5„r~s!cosf,r~s!sinf,z~s!…, ~2.7!

wheref is the azimuthal angle. Oncec~r! is solved from Eq.
~2.4!, we can obtain the contourz~r! @5z(s)# by a simple
integration,

z~r!2z~0!5E
0

r

tanc~r8!dr8. ~2.8!

Note that there exist two branches ofc~r! for vesicles with
C` symmetry, which are the upper and the lower branches
with respect to the equatorial plane that contains ther axis,
while for vesicles withD`h symmetry, such as biconcave
and dumbbell-like shapes, these two branches are identical.
We study the latter case in this section.

Since the biconcave liposomes begin to deform with in-
creasing osmotic pressure difference@7#, it is reasonable to
assume that the initial biconcave vesicles exist at

Dp5l50. ~2.9!

This constraint is indeed an important condition required
from surface chemistry as well as serving to simplify Eq.
~2.4!. Tanford has pointed out that for phospholipid vesicles
formed from neutral lipid molecules in pure water, the pres-
sures on the two sides of the vesicle membranes must be
exactly equal, i.e.,Dp50, because the membranes are per-
meable to water@16#. Tanford has shown further that in a
symmetric bilayer bounded on both sides by water, the sur-
face area of the bilayer adjusts itself to its optimal value at
(]F/]A)T,V50, and hence the surface tension vanishes, i.e.,
l50. Condition~2.9! is also based on the consideration by
Brochard and Lennon@21# that the normal state of RBCs can
be characterized by no surface tension, no pressure differ-
ence, and finite curvature energy. Furthermore, de Gennes
has emphasized thatl50 is a good approximation for RBCs
@22#. In addition, Deuling and Helfrich have shown from the

numerical calculation for axisymmetric vesicles@20# that the
sign of Dp is either positive~the upper figure of Fig. 3 in
their article! or negative~the right figure of Fig. 12! for bi-
concave discoids. Thus we can expect that a biconcave dis-
coid with Dp50 does exist. From these reasons, we focus
our attention on the general solutions of Eq.~2.4! under con-
dition ~2.9! in the following and show that the circular bi-
concave shape is a solution of Eq.~2.4!.

Although Eq.~2.4! cannot be greatly reduced, even using
Eq. ~2.9!, surprisingly we can find an analytic solution of Eq.
~2.4!,

c5arcsin@r~c0lnr1b!#, ~2.10!

whereb is a constant dependent on the size of the vesicle.
The proof of Eq.~2.10! is straightforward and can be carried
out by substituting the first, second, and third differentiation
of c with respect tor, which are

dc

dr
5

1

cosc S sincr
1c0D , ~2.11!

d2c

dr2
5

sinc

cos3c S sincr
1c0D 21 c0

r cosc
, ~2.12!

and

d3c

dr3
5S 3 sin2ccos5c

1
1

cos3c D S sincr
1c0D 3

1
3c0sinc

rcos3c S sincr
1c0D2

c0
r2cosc

, ~2.13!

respectively, into Eq.~2.4! with the condition, Eq.~2.9!.
As pointed out in our previous paper@23#, the solution

represents a circular biconcave shape in case of negative
spontaneous curvature. We describe here the characteristics
of the solution in detail. From the equation,

dz

dr
5tanc5r~c0lnr1b!/cosc50, ~2.14!

we find two extrema ofz~r! that are located atr50 and

r5rB5exp@2b/c0#. ~2.15!

Then the solution is rewritten as

c5arcsin@rc0ln~r/rB!#. ~2.16!

Using Eq.~2.16!, Eq. ~2.11! is also rewritten as

dc

dr
5
c0@ ln~r/rB!11#

cosc
. ~2.17!

Because ofc0,0, dc/dr50 yields the maximum value for
c,

c5cm5arcsin~2rMc0!, ~2.18!

at

r5rM5rB /e, ~2.19!

FIG. 2. Schematic illustration of a cross section of a vesicle with
D`h symmetry. Thez axis is the axis of rotational symmetry.
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where lne51. From 0,cm,p/2, the range ofrBc0 is

0.rBc0>2e. ~2.20!

At the equator of a vesicle withD`h symmetry, as shown in
Fig. 2, c is equal to2p/2. Substitutingc52p/2 into Eq.
~2.16!, we find the relation betweenrB and the equatorial
radiusrc ,

rcc0ln~rc /rB!521. ~2.21!

From Eqs.~2.19!–~2.21!, we have 0,rM,rB,rc .
The behavior of the solution, Eq.~2.10!, becomes obvious

from the above description. Fromr50 to rM , c monotoni-
cally increases from 0 tocm , and fromrM to rc , c mono-
tonically decreases fromcm to 2p/2 and changes its sign
from positive to negative atr5rB . Accordingly,z~r! in Eq.
~2.8! monotonically increases fromr50 to rB , takes the
maximum value atr5rB , and then monotonically decreases
from rB to rc . The schematic contour ofz~r! can be seen in
one quadrant of Fig. 2. We note that Eq.~2.10! does describe
a circular biconcave shape in case ofc0,0, together with an
appropriaterB value in the range determined from Eqs.
~2.20! and ~2.21! and

E
0

rc
tanc~r8!dr8,0, ~2.22!

which is fromz(0).z(rc). The above analysis indicates that
under the constraints of Eqs.~2.19!–~2.21! the shapes gen-
erated by the solution are uniquely determined byc0 andrB .
Instead ofrB , the shapes are also determined byc0 and the
vesicle surface areaA0, because we have the following rela-
tion betweenA0 andrB :

A054pE
0

rc r

A12@rc0ln~r/rB!#2
dr. ~2.23!

We choose the biconcave shape as an initial shape for the
study of the polygonal shape transition. This choice is more
reasonable than that of a modified Cassini equation in Ref.
@8#. Since the shape transformation has been observed in
vesicles derived from human RBC ghosts after digestion of
surface membrane proteins by trypsin as well as in lipo-
somes, we fit the biconcave shape to the human RBC shape.
To do this, we employ the experimentally obtained shape
equation for human RBCs by Evans and Fung@10#,

z~r!5
1

2
A12S r

rc
D 2FA1BS r

rc
D 21CS r

rc
D 4G ,

~2.24!

where rc53.91 mm, A50.81 mm, B57.8 mm, and C5
24.39mm. The shape is shown in Fig. 3 by a solid line. This
shape possesses a maximum ofz~r!51.28 mm at
rB50.70rc . We fit the shape of the present solution Eq.
~2.16! to Eq. ~2.24! at rc53.91mm, and obtainrB50.62rc
and c0R0521.67, whereR05AA0/4p and A05126 mm2.
The best-fitted curve is also shown in Fig. 3 by a dotted line,
and is in good agreement with the experimental RBC shape
in whole range fromr50 to r5rc , but with slight deviation.
The deviation does not have a serious meaning in principle,

because Evans and Fung’s experimental expression repre-
sents an averaged shape over 50 RBCs, and indeed, a RBC
with the same shape as the present theoretical result has been
observed~see, for example, Cell 2 in Ref.@24#!. Further-
more, the c0R0 value deduced here agrees well with
c0R0521.62, which has been obtained from the three geo-
metric relations for vesicles using Eq.~2.24! as an approxi-
mate shape solution for the RBC shape@25#. It is therefore
reasonable to use the present theoretical shape, Eq.~2.16!,
with rB50.62rc and c0520.53 mm21 as the initial shape
for the polygonal shape transformation.

III. SECOND VARIATION OF THE BICONCAVE
VESICLES

As described previously, we assume that the initial shape
of the vesicle is the circular biconcave shape defined by Eqs.
~2.8!, ~2.9!, and ~2.16! with the fixed values ofc0, rB , and
rc . It has been reported that the membrane area is constant,
while the membrane volume is decreased during the polygo-
nal shape transformation of liposomes@7#. Thusl andDp in
Eq. ~3.2! are regarded, respectively, as a Lagrange multiplier
and an actual osmotic pressure difference, which is the driv-
ing force for the transformation@7#, and have small nonzero
values, because these two quantities are related to each other
@see Eq.~4.24!#. Of course, the vesicle shape can also be
deformed by changing spontaneous curvature; however, to
examine the effect of osmotic pressure difference, we as-
sume thatc0 is constant in the present calculation. This as-
sumption is reasonable because the circular biconcave form
of the side view was maintained during the polygonal shape
transformation processes of liposomes@7#.

We consider a slightly deformed surface defined as

YW 85YW 1q~s,f!nW , ~3.1!

wherenW is the outward unit vector normal to the initial sur-
face of the biconcave vesicleYW (s,f), andq(s,f) is a suffi-
ciently small and smooth function. Accordingly, from Eq.
~2.1!, the shape energy of a deformed vesicle, which is ex-
panded up to second order with respect toq, is

FIG. 3. Cross section of cell shapes. Only one quadrant is
shown. There is rotational symmetry around thez axis and reflec-
tion symmetry at ther axis. Solid line represents the experimentally
obtained expression for RBCs by Evans and Fung@10#. Dashed line
represents Eq.~2.16!, the solution to Eq.~2.4! with rc53.91mm,
rB/rc50.62 andc0R0521.67.
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F5Fb
~0!1d~1!Fb1d~2!Fb1DpV01Dp~d~1!V1d~2!V!

1lA01l~d~1!A1d~2!A!, ~3.2!

whereF b
(0), V0, andA0 are the bending energy, volume, and

area of the initial biconcave vesicle, respectively, andd~1!

and d~2! correspond to the first and the second variations,
respectively.

For the calculation of the quantities on the right-hand side
of Eq. ~3.2!, the most straightforward and convenient ap-
proach has been shown by Ou-Yang and Helfrich@17#; they
have derived the general expressions for the first and the
second variations of the shape energy. By putting the general
coordinatesu5s andv5f, and using Eqs.~2.5!–~2.7! and
Eqs.~2! and~3! in Ref. @17#, we have the following geomet-
ric quantities of the initial vesicle:

YW 15]sYW 5~cosc cosf,cosc sinf,sinc!,

YW 25]fYW 5~2r sinf,r cosf,0!,

g115YW 1•YW 151, g125YW 1•YW 250, g225YW 2•YW 25r2,

g5det~gi j !5r2,

nW 5YW 13YW 2 /Ag5~2sinc cosf,2sinc sinf,cosc!.
~3.3!

From Eqs.~2.6! and ~2.11! we also have

dc

ds
5
dc

dr

dr

ds
5S sincr

1c0D . ~3.4!

From Eqs.~3.3! and ~3.4!, the second fundamental forms of
the surface are

L115nW •]s
2YW 5

sinc

r
1c0 ,

L125nW •]s]fYW 5L2150,

L225nW •]f
2YW 5r sinc. ~3.5!

Since g125L1250, g115g 11
21, g225g 22

21, L115L 11
21, and

L225L 22
21, the mean and the Gaussian curvatures can be ob-

tained as

H5 1
2g

i j Li j5
sinc

r
1
c0
2

~3.6!

and

K5
sinc

r S sincr
1c0D , ~3.7!

respectively. The Christoffel symbolsG i j
k defined by@26#

G i j
k 5 1

2g
kl~] igl j1] jgli2] lgi j ! ~3.8!

also appear in the general formula for the second variation of
the shape energy@see Eq.~39! in Ref. @17##. Substituting Eq.
~3.3! into ~3.8!, we have

G11
1 5G11

2 5G12
1 5G22

2 50,

G22
1 52r cosc, G12

2 5
cosc

r
. ~3.9!

These results can easily be checked in case of spherical
vesicles. As shown in our previous paper@23#, let c050 and
b51/R0 ; Eq. ~2.10! becomesr5R0sinc, which represents a
sphere with radiusR0. Substitutingr5R0sinc into Eq. ~3.9!
yields the same expressions of the Christoffel symbols for
the sphere as Eq.~42! in Ref. @17#, if we setR051. This is
because the general coordinateu5u5c andv5f was used
in Ref. @17#, whereasu5s5R0c and v5f in the present
paper for the sphere. We can now calculate all the terms in
Eq. ~3.2!.

The first term on the right-hand side of Eq.~3.2!, F b
(0), is

given by that of Eq.~2.1!. However, we do not deduceF b
(0),

because we are interested in the variation of the shape en-
ergy, dF5F2F b

(0). The second term in Eq.~3.2!, the first
variation of the shape energyd~1!Fb , is zero, because the
biconcave vesicle, Eq.~2.10!, is an equilibrium shape under
the condition ofDp5l50. The third term, the second varia-
tion of the energyd~2!Fb , is @see Eq.~39! in Ref. @17##

d~2!Fb5 R „q2†2k~H1c0/2!~8H325KH1c0K/2!

12k~K22H2!~K12c0H12H2!

12~k/Ag!] i] j@Ag~H1c0/2!~2Hgi j2KLi j !#

2~k/Ag!]m$Ag~H1c0/2!@gi j ] j~L jl g
lm!

2Llkg
kmgi jG i j

l 2~2Hgi j2KLi j !G i j
m#%‡

1qiqj$k~H1c0/2!2gi j12k~H1c0/2!

3~KLi j23Hgi j !%22k~K1c0H !qgi j¹ iqj

1~k/2!~gi j¹ iqj !
2
…dA, ~3.10!

whereqi5] iq and¹ iqi is the covariant derivative ofqi de-
fined by

¹ iqj5] i] jq2G i j
k qk . ~3.11!

After some calculation, we have

d~2!Fb5k R @q2c0
4~2c0

22r2222x324x21 1
2 !

1qs
2c0

2~ 1
2c0

22r222x22 1
2x21!

1qf
2c0

4~c0
22r2222c0

24r24!

1 1
2qss

2 1 1
2qff

2 r241qsf
2 r22#dA, ~3.12!

wherex5ln~r/rB!, qs5]sq, qf5]fq, qss5] s
2q, qff5] f

2q,
andqsf5]s]fq.

The other important terms in Eq.~3.2! are the area and the
volume variations, which are@see Eqs.~19! and~20! in Ref.
@17##

dA5 R ~22Hq1 1
2g

i j qiqj1Kq2!dA ~3.13!
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and

dV5 R ~q2Hq2!dA, ~3.14!

respectively. Using Eqs.~3.3!, ~3.6!, and ~3.7!, we reduce
these two equations to

Dp~d~1!V1d~2!V!5Dp R @q2c0~x1 1
2 !q2#dA

~3.15!

and

l~d~1!A1d~2!A!5l R @22c0~x1 1
2 !q1 1

2 ~qs
21r22qf

2 !

1c0
2x~x1 1

2 !q2#dA. ~3.16!

Substituting Eqs.~3.12!, ~3.15!, ~3.16!, and d~1!Fb50 into
Eq. ~3.2!, we obtain the variation of the shape energy in the
form

dF5F2Fb
~0!5DpV01lA01 R @Dp22lc0~x1 1

2 !#qdA

1k R H q2c04@2c022r2222x324x21 1
2

2~Dp/kc0
3!~x1 1

2 !1~l/kc0
2!x~x11!#

1qs
2c0

2F 1
2 c0

22r222x22
x

2
211~l/2kc0

2!G
1qf

2c0
4@c0

22r2222c0
24r241~l/2kc0

2!c0
22r22#

1 1
2qss

2 1 1
2qff

2 r241qsf
2 r22J dA. ~3.17!

The above equation includes the first and the second varia-
tions of the shape energy with respect toq(s,f) that de-
scribes the shape deformation normal to the equilibrium sur-
face induced by the increase in the osmotic pressure
difference and in the surface tension from zero toDp and
from zero tol, respectively. Thus, Eq.~3.17! is the basic
formula for the study of the instability and deformation of
the vesicles.

IV. POLYGONAL SHAPE TRANSITION

A deformed shape should be an equilibrium one at which
dF in Eq. ~3.17! is minimum. In general, this minimization
of dF with respect toq(s,f) can be carried out using the
well-known Euler-Lagrange approach; Eq.~3.17! can be re-
written as a Lagrangian integral

dF5E L„q~s,f!,qs ,qss,qsf ,qf ,qff…ds df, ~4.1!

and then the Euler-Lagrange equation is

]L

]q
2

]

]s

]L

]qs
2

]

]f

]L

]qf
1

]2

]s]f

]L

]qsf
1

]2

]s2
]L

]qss

1
]2

]f2

]L

]qff
50, ~4.2!

where

]L

]q
52krc0

4~2c0
22r2222x324x21 1

2 !q1Dpr

22Dprc0~x1 1
2 !q22lrc0~x1 1

2 !12lrc0
2x~x11!q,

~4.3!

]L

]qf
5@2krc0

4~c0
22r2222c0

24r24!1lr21#qf , ~4.4!

]L

]qsf
52kr21qsf , ~4.5!

]L

]qss
5krqss, ~4.6!

and

]L

]qff
5kr23qff ~4.7!

can be obtained from Eq.~3.17!. Equation~4.2! is a linear
partial differential equation forq(s,f). From Eqs.~4.3!–
~4.7!, we find that the general form of the solutionq(s,f) is

q~s,f!5 (
m50

`

f m~s!cosmf, ~4.8!

where f m(s) satisfies some linear fourth-order ordinary dif-
ferential equations. It is obvious that Eq.~4.8! exhibits the
feature of the polygonal shape of the vesicle; however, there
are no conventional methods to solve a fourth-order linear
differential equation in general. For the present case, the nu-
merical analyses of the differential equations are also diffi-
cult, because they cannot provide a clear and complete be-
havior of the solution. For these reasons, we use an
approximate but very efficient approach to solve this prob-
lem.

Instead of solving the differential equations forf m(s), we
assume the approximate solution ofq(s,f),

q5r2b~f!, ~4.9!

wherer2 in the above solution is determined by analyzing
the so-called index equations associated with the differential
equations forf m(s); the solution can remove the singularity
of dF in Eq. ~3.17!.

Using Eq. ~4.9!, Eq. ~4.1! is reduced to the Lagrangian
integral with respect tob~f!,

dF5E
0

2p

L~b,bf ,bff!df, ~4.10!
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wherebf5(d/df)b andbff5(d/df)bf . Substituting Eq.
~4.9! into Eq. ~3.17! and neglecting the two constant terms,
DpV0, andlA0, we have an expression forL~b,bf ,bff! as

L5E
0

rc
$2l@22r2c0~x1 1

2 !b1 1
2 ~4r2cos2cb21r2bf

2 !

1r4c0
2x~x11!b2#1Dp@2r2b2r4c0~2x11!b2#

12k@42c0
2r2~216x114x2!

1c0
4r4~ 1

212x218x3112x4!#b2

12k@21c0
2r2~124x2!#bf

21kbff
2 %

r

cosc
dr. ~4.11!

We have used the basic relations given in the preceding sec-
tions, such as Eqs.~2.6!, ~3.3!, and ~3.4!, in deducing the
above equation. The Euler-Lagrange equation, Eq.~4.2!, is
then reduced to

Dpw12c0lw21@l~w31c0
2z2!2Dpc0z11kA1#b

2~lw11kA2!bff1kĀ0bffff50, ~4.12!

wherebffff5d4b/df4, andw1, w2, w3, z1, z2, A0, A1, and
A2 have been obtained as

w152E
0

rc
~r3/cosc!dr5155 mm4, ~4.13!

w254E
0

rc
@r3~x1 1

2 !/cosc#dr5239 mm4, ~4.14!

w358E
0

rc
r3coscdr5352 mm4, ~4.15!

z154E
0

rc
@r5~x1 1

2 !/cosc#dr52.853103 mm6,

~4.16!

z254E
0

rc
@r5x~x11!/cosc#dr51.633103 mm6,

~4.17!

A052E
0

rc
~r/cosc!dr518.5 mm2, ~4.18!

A154E
0

rc
$r@42c0

2r2~216x114x2!

1c0
4r4~ 1

212x218x3112x4!#/cosc%dr

581.0 mm2. ~4.19!

A254E
0

rc
$r@21c0

2r2~124x2!#/cosc%dr5116 mm2,

~4.20!

by using the geometrical parameters of RBCs described in
Sec. II as those of the initial biconcave shape.

For the further calculation of the polygonal shape trans-
formation, we put

b5b01bmcosmf. ~4.21!

Substituting Eq.~4.21! into the Euler-Lagrange equation Eq.
~4.12!, we have

Dpw12Dpc0z1b02c0lw21l~w31c0
2z2!b01kA1b050,

~4.22!

$kA12Dpc0z11l~w31c0
2z2!%bmcosmf

1~lw11kA2!m
2bmcosmf1kĀ0m

4bmcosmf50.

~4.23!

Equation~4.22! gives the Lagrange multiplierl as

l5
Dpw12Dpc0z1b01kA1b0

c0w22~w31c0
2z2!b0

. ~4.24!

This equation shows the relation between the osmotic pres-
sure difference and the surface tension in the shape deforma-
tion. With this result and Eq.~4.23!, we obtain the most
important relation,

Dp[2
Dp

kc0
3 5

~A0m
41A2m

2!@c0w22~w31c0
2z2!b0#1A1~c0w21m2w1b0!

c0
3w1~w31m2w1!1c0

5~w1z22z1w2!2c0
4z1w1m

2b0
, ~4.25!
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whereDp52Dp/kc0
3 is the dimensionless osmotic pressure

difference~Dp is positive because ofc0,0!. From the con-
servation of area,

dA5E dfE 2r

cosc
$22r2c0~x1 1

2 !~b01bmcosmf!

1 1
2 @4r2cos2c~b01bmcosmf!21m2r2bm

2 sin2mf#

1c0
2r4x~x11!~b01bmcosmf!2%dr50 ~4.26!

and Eqs.~4.13!–~4.20!, we obtain

24w2c0b012w3~b0
21 1

2bm
2 !1m2w1bm

2 12c0
2z2b0

2

1c0
2z2bm

2 50, ~4.27!

which permits us to determineb0 as

b05bm
2 ~w31m2w11c0

2z2!/4w2c0 , ~4.28!

where we neglect the terms ofb0
2. This equation is used to

numerically analyze the polygonal shape transformation, and
it is obvious that forc0,0, b0 is always negative, showing
that the shape transformation is the compressive process of
the vesicle. We note that Eq.~4.28! is only valid for a small
deformation of the vesicle.

V. DISCUSSION

First we discuss the threshold osmotic pressure difference
for the polygonal shape transformation. The shape transfor-
mation occurs above the threshold osmotic pressure differ-
ence

Dpm5~2kc0
3!

w2~m
4Ā01m2A21A1!

c0
2w1~m

2w11w3!1c0
4~w1z22z1w2!

~m51,2,3, . . .!, ~5.1!

which is obtained from Eq.~4.25! by puttingb050, because
at the threshold bothb0 andbm are zero. Using the numerical
values in Eqs.~4.13!–~4.20!, we can calculate Eq.~5.1! for
m51,2,...,10 and show the results in Fig. 4. The threshold

osmotic pressure difference is a monotonic increasing func-
tion ofm except form52. It is interesting to note that in the
case of the polygonal shape deformation of a spherical
vesicle induced by pressure@17,19#, the threshold pressure
exhibits a monotonic increase withm as well.

Hotani @7# has experimentally shown that the increase in
the concentration of a variety of reagents such as NaCl, KCl,
and CaSO4 causes the polygonal shape transition of the bi-
concave liposomes. From the van’t Hoff law@27#, the os-
motic pressure difference across a membrane separating two
ideal, dilute solutions can be related to the concentration dif-
ference of the solutions as

Dp5pout2pin5RT~cout2cin!5RTDc, ~5.2!

whereR is the universal gas constant andT is the tempera-
ture. It is obvious that the increase incout increasesDp. This
finding is consistent with the present theoretical prediction;
however, Hotani has observed only elliptical, triangular,
square, and pentagonal shapes, which correspond tom52, 3,
4, and 5,@see Figs. 2~b!–2~e! in Ref. @7# as well as Fig. 1#.
The reason why the vesicle withm51, whose shapes are
shown in Fig. 5~a!, has not been observed is that the thresh-
old pressure difference form51 is negative in the present
calculation, as shown in Fig. 4. In addition, the reason why
deformed liposomes havingm.5 have not been observed is
that the threshold pressure lies betweenDp5 and Dp6 in
Hotani’s experiment. It is therefore expected that the lipo-
somes havingm.5 will be observable aboveDp.Dp5 . The
experimental confirmation of this prediction will be an inter-
esting issue in the future.

Next, we discuss the development of the shape deforma-
tions above the threshold pressureDpm . For this purpose, we
calculate the compressive ratio of the volume of the vesicle,
DV/V0. In the linear approximation,DV/V0 can be obtained
as

DV

V0
5

R qdA

V0

5
2

V0
E
0

2p

dfE
0

rc r3

cosc
~b01bmcosmf!dr

5S 2p

V0
Dw1b0 , ~5.3!

wherew1 is given by Eq.~4.13!. The top view of amth
polygonally deformed vesicle is calculated using Eqs.~4.9!
and ~4.21! and is given by

r5rc1rc
2~b01bmcosmf!. ~5.4!

In Fig. 5, we show the development of the top view of the
deformed vesicles form51 to 5 at someDV/V0 values. The
correspondingDp values are also shown in the figure, which
are computed from Eq.~4.25!. We find that in a mode ofm,
Dp slightly increases with increasinguDV/V0u, as shown in
Figs. 4 and 5. This behavior is consistent with the experi-
ment @7#.

The agreement between the theory presented above and
the experiment@7# shows that the basic approximation for

FIG. 4. Osmotic pressure difference formth polygonally de-
formed vesicles atDV/V05531022 and 1023. The threshold pres-
sure differenceDpm is also shown. Here we take2kc0

3 as the unit
of pressure.
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q~r,f! in Eq. ~4.9! is reasonable. Equation~4.9! states that
the deformation from the initial biconcave shape quadrati-
cally increases with increasing distance from the center of
the vesicle,r. This leads to the fact that the side view of the

vesicle is maintained in the circular biconcave shape, as ob-
served in the experiment.

Here, we would like to comment on the previous theoreti-
cal analysis for the polygonal shape transformation by

FIG. 5. Top views of circular biconcave vesicles with several polygonal deformations;~a! asymmetric shape~m51!, ~b! elliptical shape
~m52!, ~c! triangular shape~m53!, ~d! square shape~m54!, and ~e! pentagonal shape~m55! as a function of the osmotic pressure
differences in units of2kc0

3 and the ratio of the change in the volume,DV/V0.
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Sekimura and Hotani@8#. They have employed the Canham
model, which is a special case of the Helfrich spontaneous
curvature model~c050!, have not considered the effect of
the osmotic pressure difference, and have used the modified
Cassini equation, which is not a solution of the shape equa
tion for axisymmetric vesicles, Eq.~2.4!. We thereby point
out that their theoretical results cannot be directly compared
with the experimental results of Hotani@7#. For example,
Sekimura and Hotani have shown that only the vesicles with
m52 deformation have the minimum shape energy at
DV/V0;1023. On the other hand, in our present calculation,
all experimentally observed deformations withm52–5 are
found at the sameDV/V0. Furthermore, they have not given
the result of them55 deformation, which has been observed
in the experiment@7#.

Finally, we briefly discuss the other shapes of liposomes
found in the experiment@7# that have not been explained in
the present calculation. For example, the strongly deformed
shape form52 is a peanutlike or a dumbbell-like form@Fig.
2~f! in Ref. @7## and further grows to become a cylinder@Fig.
2~l! in Ref. @7##. For the description of such a process, the
present calculation, based on up to the second variation of
the shape energy, is not suitable, because the expression for
the shape energy is valid only for small deformations. How-
ever, we stress that a peanutlike or dumbbell-like vesicle can
be described by the solution of Eq.~2.10! in the case of
c0.0. In a recent paper@25#, it has been shown that there
exists a relation betweenc0 and the membrane potentialUM ,

c05
e11UM

k
1c0

~0! , ~5.5!

wherec0
~0! takes account of the asymmetric distribution of

the molecules in the bilayer,e11.1024 dyne1/2 @28# is the
piezoelectric constant of the membrane, and the membrane
potentialUM is defined as

UM5U in2Uout. ~5.6!

According to the Nernst equilibrium equation@27#, we have

UM5
RT

zF lnS coutcin
D , ~5.7!

wherez is the valence of the ions in the solutions andF is
the Faraday constant. We find from Eq.~5.2! that at the
initial state of the liposomes,cout is equal tocin for Dp50,
but with increasingDp, cout becomes larger thancin , which
leads toc0.0, as evident from Eqs.~5.5! and ~5.7!. Since
cylindrical vesicles havec0.0 @17#, c0 is another driving
force of the cylinder formation process. From this discus-
sion, we suggest that for the analysis of the large deforma-
tions shown in Figs. 2~l!–~z! in Ref. @7#, the changes inc0 as
well asDp must be considered simultaneously.

VI. CONCLUSIONS

We have analyzed the polygonal shape transformation ob-
served in liposomes on the basis of the Helfrich spontaneous
curvature model. We show that the analytical solution of the
shape equation for axisymmetric vesicles represents a circu-
lar biconcave discoid forc0,0, and thus use the solution as
an initial biconcave shape. We then calculate the shape en-
ergy of the deformed vesicles by taking account of up to the
second variation. From the minimization of the shape energy
in terms of the Euler-Lagrange approach, the threshold os-
motic pressure difference formth-polygonal deformation is
derived and the shapes of the deformed vesicles are dis-
played as a function of the osmotic pressure and the change
in the volume of the vesicles. We confirm the experimental
evidence that the increase in the osmotic pressure is the driv-
ing force of the polygonal transformation. In the experiment,
further transformation from the polygonal shapes to cylinder-
like shapes has been observed as well. The present theory
cannot be applied to the analysis of this transformation, be-
cause the theory is valid for small deformations of the
vesicles from the biconcave shape. We therefore discuss a
mechanism of the transformation to the cylinders, and indi-
cate that the positive spontaneous curvature as well as the
increase in the osmotic pressure are the driving force of the
transformation.
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