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Polygonal shape transformation of a circular biconcave vesicle induced by osmotic pressure
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Polygonal shape transformation processes observed in lipogémemtani, J. Mol. Biol.178 113(1984)]
have been analyzed on the basis of the Helfrich spontaneous curvature model. First, a mathematical solution
for the biconcave axisymmetric vesiclgs. Naito, M. Okuda, and Z. Ou-Yang, Phys. Rev4E 2304(1993]
is derived, and then the second variation of the shape energy of the slightly deformed vesicles from the
biconcave shape is calculated. After the minimization of the shape energy, it is found that the biconcave vesicle
is transformed into elliptical, triangular, square, pentagonal, or other polygonal shapes above the threshold
osmotic pressure difference. At a constant valuaufV,, the osmotic pressure is found to be a monotonic
increasing function ofn, except form=2, whereV is the initial volume of the biconcave vesiclgy is the
change in the volume of the deformed vesicle, andenoteanth polygonal deformation. It is shown that the
experimental results of the polygonal shape transformation in liposomes can be well explained by the present
theoretical predictiond.S1063-651X96)09909-9

PACS numbe(s): 87.22.Bt, 82.65-i, 68.15+e, 46.30i

[. INTRODUCTION the initial biconcave shape, but is apparently different from
the real biconcave shape of RB[A9)]. To overcome the first

Recently, both experimental and theoretical aspects oiveak point, HelfricH11] has shown the importance of spon-
amphiphile bilayers and monolayers have gathered much ataneous curvature and has developed a phenomenological
tention from physicists and chemigts]. Amphiphilic mol-  theory for the elasticity of fluid membranes by analogy with
ecules, such as phospholipids, are often assembled into Jhe curvature elasticity of liquid crystals. The spontaneous
layers that form single shells called vesicles because of thgurvature in this model likely results from the asymmetric
repulsive interaction between the hydrocarbon chains of lipignolecular distribution between the inner and the outer mono-
and water molecules. These structures are regarded as simpfyer of membranes. Deuling and Helfrich have shown that
models for biomembranes and cdl’&-5|. A great success in
this field is the understanding of the role of the bending

elasticity for both equilibrium shapes and their fluctuations @
of fluid membrane$1].
The shape transformations of the vesicles can be induced C/\<>

by changing external parameters, such as temper@liead
osmotic pressurg’]. One of the most interesting problems in
this context is the transformation pathways of liposomes re-
ported by Hotan{7]. He has shown with the dark-field mi-
croscope that liposomes whose initial shapes are circular bi-
concave transform into elliptical, triangular, square, or
pentagonal shapes, as schematically illustrated in Fig. 1, and
has concluded that the driving force for the transformations
is osmotic pressure. Since these transformation pathways
have also been found in biological membrane vesicles, such

as vesicles derived from human red blood ¢BIBC) ghosts

after digestion of surface membrane proteins by trypsin, the
transformation is a general intrinsic property of lipid mem-
branes and hence is a theoretically important issue.

Sekimura and Hotar{i8] have numerically explained the ©

shape transformation pathways on the basis of the Canham (c) (@ (¢)

model, which does not include spontaneous curval@ie

However, their approach has two principal weak points. F|G. 1. Schematic illustration of polygonal shape transformation
First, the Canham model predicts two shapes having thgathways of liposomes by osmotic dehydratf@h The liposomes
same minimum energy, a dumbbell-like shape and a bicomaving circular biconcave shape whose side and top views are
cave shape; the former shape has not been found in RBG#iown in(a) are transformed intgb) elliptical, (c) triangular, (d)

[2]. Second, a modified Cassini equation was employed asguare ore) pentagonal shapes.
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the RBCs under normal physiological conditions have negayAA, where y is an additional Lagrange multiplier. How-
tive spontaneous curvatufé&2]. Since this model has been ever, the simple derivatiofsee Eq(19) in Ref.[17]] shows
widely used for the study of amphiphile monolayers and bi-that for a uniform membrane the area differentA can
layers[4], the theoretical analysis of the polygonal shapealways be written as
transition should be based on the Helfrich spontaneous cur-
vature model. The theoretical analysis has already been car-
ried out by Kawakatsu, Andelman, Kawasaki, and Taniguchi
[13]. They numerically studied polygonal shapes of vesicles
having two component membranes, and their calculation wa@heret is the thickness of the bilayer. It is evident that the
based on the shape equation by Seifert, Berndl, and LipyAA term can be incorporated in tlog andk values in Eq.
Owsky [14], which is different from the Shape equation de- (21) Thus we should stress that the bilayer COUp|e model is
rived from the Helfrich mode[15]. essentially identical to the Helfrich spontaneous curvature
In this paper, we apply the Helfrich spontaneous curvamodel.
ture model to the analysis of the shape transformation of Since the Helfrich shape energy, H@.1), is a complete
|iposomes having the p0|ygona| Symmetry Observed by Hocombination Of |ineal’ and quadratic inVariantS Of the Surface
tani[7]. In Sec. Il, using the shape equation for the axisym-Curvatures; andc,, the minimization of Eq(2.1) generates
metric vesicles derived originally by Hu and Ou-Yafid], a variety of surfaces in the Euclidean space. For the descrip-
an analytical solution to the shape equatfds] is derived tion of such surfaces, a general shape equation of equilib-
under the conditions of no surface tension and no osmotiéium vesicles has been derived from the first variation of Eq
pressure difference, which have been derived from the fun(2.1) by using general rules of differential geometry and im-
damental principle of surface chemistry for phospholipidPosing the closed condition of the surface of vesicles, and is
vesicles in an aqueous mediyi6]. It is demonstrated that
the solution is a circular biconcave discoid in the case of &
negative spontaneous curvature. Hence, the biconcave solu-
tion is suitqble for the initial shape of the polygo'nal ShapewhereK=clc2 and H=(—1/2)(c,+¢,) are the Gaussian
transformat_lon. Section 1l presents the calculatl_on of theand the mean curvatures, respectively, §Ads the Laplace-
second variation of the shape energy of the vesicle havingqtrami operatof19].
slight distortion from the initial biconcave solution using the
general formula for the stability analysis of equilibrium

AA= 3g [t(ci+Cp) +t2ciC]dA+O(t), (2.2

p—2NH +K(2H + ¢p) (2H? = 2K — coH) + 2kV2H =0,
(2.3

Only axisymmetric equilibrium shapes of vesicles have
. ; . been extensively studied with numerical methods so far
shape given by Ou-Yang and Helfri¢h7]. Section IV de- 114 54 | this study, we use the general shape equation for
rives and solves the Euler-Lagrange equation for the seco isymmetric vesicles that has been derived from @@

variation formula in the polygonal deformation mode. Sec-py y, and Ou-Yang15] and that is a third-order differential
tion V discusses the present theoretical results. It is foun quation ofy(p)

that the theoretical results are in good agreement with those

of the experiment. Section VI concludes the article. d3y d2y\ ( dy
cos zp( d—g) =4 siny cos’-zp( PP d_) - cosﬁ( Sirty
Il. A SOLUTION FOR BICONCAVE VESICLES P P p
3 : 2
In the Helfrich spontaneous curvature model, the equilib- - lcoszzp) (d_w + M (d_‘ﬁ)
rium shape of a vesicle is determined by the minimization of 2 dp 2p dp

the shape energy, which is

2cosy (d2y\ [c3 2cesing A
T\ T2 T, Tk
F=(k/2) j;(cl+c2—co)2dA+Apf dV+\ fﬁdA,
Sirfy—2 cogy dy
@3 207 Cos‘f”(%

wherek, ¢, andc,, andc, are the bending rigidity, the two
principal curvatures and the spontaneous curvature, respec-
tively. Since we consider the vesicles with spherical topol-
ogy here, the additional Gaussian curvature energy term
kfc,c,dA in the original expression of the bending energy Siry+ 2 sing coyr
[11] is_equal to 4rk and has been neglected in EQ.1), N 2p°
wherek is the Gaussian curvature modulus. The second and
third terms in Eq.(2.1) either take into account the con- wherep is the distance from the symmetric axisaxis) of
straints of constant volume and area or represent actual workotation, ¥{p) is the angle made by the surface tangent, and
Depending on the considered situation, the two parametethe p axis as shown schematically in Fig. 2. In this case, we
Ap and\ serve as Lagrange multipliers or the actual osmotichave the following relations:
pressure difference between outer and inner media
(Ap=pour—Pin) and the tensile stress, respectively. dz

Instead of the spontaneous curvature, the bilayer couple d—S=S|n¢ 2.9
model[18] introduced the constraint of the area difference
between outer and inner monolayers of a membrane bgnd

Ap \sing c2sin
_p+ ¢+ o Siny
k kp 2p

, (2.9
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numerical calculation for axisymmetric vesiclg)] that the
sign of Ap is either positive(the upper figure of Fig. 3 in
their article or negative(the right figure of Fig. 12 for bi-
concave discoids. Thus we can expect that a biconcave dis-
coid with Ap=0 does exist. From these reasons, we focus
our attention on the general solutions of E2.4) under con-
dition (2.9) in the following and show that the circular bi-
concave shape is a solution of HG.4).
Y Although Eq.(2.4) cannot be greatly reduced, even using
Eq. (2.9), surprisingly we can find an analytic solution of Eq.
(2.9,

Z
y=arcsifp(colnp+b)], (2.10

whereb is a constant dependent on the size of the vesicle.
FIG. 2. Schematic illustration of a cross section of a vesicle withThe proof of Eq.(2.10 is straightforward and can be carried
D.., symmetry. Thez axis is the axis of rotational symmetry. out by substituting the first, second, and third differentiation
of ¢ with respect top, which are

dp
—— =C09/, (2.6 d 1 [sin
ds~ ¥ —lpz—(—‘“co), (2.11
dp cosy\ p
wheres is the arc length of the vesicle with axisymmetry. _ _
The vesicle surface is hence represented by the vector d*y sing [sing 2 ¢ 21
Y(s,¢) in Euclidean space as dp?  coSy |\ p tCo| + p cosy’ (2.12
Y(s, )= (p(s)cosp,p(s)sing,z(s)), (27  and
where¢ is the azimuthal angle. Ona#p) is solved from Eq. d3y (3 sirfy N 1 (sinzp 8
(2.4), we can obtain the contour(p) [=2z(s)] by a simple dp® | coSy ' coSy/\ p Co
integration,
3cosing (Sinc// ) Co
p t oSy | 5 T T S20gs (2.13
2(p)—2(0)= f tany(p")dp’. 2.9 peosy  p prcos)
0
respectively, into Eq(2.4) with the condition, Eq(2.9).
Note that there exist two branches gfp) for vesicles with As pointed out in our previous papg23], the solution

C.. symmetry, which are the upper and the lower branchegepresents a circular biconcave shape in case of negative
with respect to the equatorial plane that containsgdlaxis,  spontaneous curvature. We describe here the characteristics
while for vesicles withD.,, symmetry, such as biconcave of the solution in detail. From the equation,

and dumbbell-like shapes, these two branches are identical.

We study the latter case in this section. dz
. . . . L —= = + = .
Since the biconcave liposomes begin to deform with in- dp tan=p(Colnp+b)/cosy=0, (214
creasing osmotic pressure differer{@g, it is reasonable to _
assume that the initial biconcave vesicles exist at we find two extrema of(p) that are located g#=0 and
Ap=\=0. (2.9 p=pps=exd —b/co]. (2.19

This constraint is indeed an important condition required?hen the solution is rewritten as
from surface chemistry as well as serving to simplify Eq. _ .
(2.4). Tanford has pointed out that for phospholipid vesicles y=arcsiripColn(p/pg)]. (2.16

formed from neutral lipid molecules in pure water, the pres- , . : :
sures on the two sides of the vesicle membranes must bLésmg Eq.(2.16, Eq. (2.11) is also rewritten as

exactly equal, i.e.Ap=0, because the membranes are per- dy  co[In(p/pg)+1]
meable to watef16]. Tanford has shown further that in a 0= coss (2.1
symmetric bilayer bounded on both sides by water, the sur- p cos)

face area of the bilayer adjusts itself to its optimal value a P ;
(9F/9A)1 =0, and hence the surface tension vanishes, i.eEecause 0Eo<0, dy//dp=0 yields the maximum value for
A=0. Condition(2.9) is also based on the consideration by ™’

Brochard and Lennoj®1] that the normal state of RBCs can = = arcsin — pyCo), (2.18
be characterized by no surface tension, no pressure differ-

ence, and finite curvature energy. Furthermore, de Genneg

has emphasized that=0 is a good approximation for RBCs

[22]. In addition, Deuling and Helfrich have shown from the p=pu=pgle, (2.19
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where Ire=1. From 0<¢,,<w/2, the range opgCy is 4

At the equator of a vesicle with.,;, symmetry, as shown in —_
Fig. 2, ¢ is equal to—=/2. Substitutingy=—=/2 into Eq. §2 | present solution |
(2.16, we find the relation betweepg and the equatorial = Evans and Fung
radiusp;, N / --------

pcColn(pc/pg) = —1. (2.2
1 | 1
From Eq@s.(2.19—(2.21), we have Kpy<pg<pc- O0 1 2 3 4 5
The behavior of the solution, E¢R.10, becomes obvious p (um)
from the above description. Frop=0 to py,, ¥ monotoni-
cally increases from 0 t@,,, and frompy, to p., ¢ mono- FIG. 3. Cross section of cell shapes. Only one quadrant is

tonically decreases frong;,, to —/2 and changes its sign shown. There is rotational symmetry around thexis and reflec-
from positive to negative gi=pg . Accordingly,z(p) in Eq. tion symmetry at the axis. Solid line represents the experimentally
(2.8) monotonically increases fromp=0 to pg, takes the obtained expression for RBCS' by Evans and Fplmj. Dashed line
maximum value ap=pg, and then monotonically decreases "ePresents Eq2.16, the solution to Eq(2.4) with p;=3.91 um,

from pg 10 p, . The schematic contour afp) can be seen in P8/Pc=0.62 andcoRo=—1.67.

one quadrant of Fig. 2. We note that EB.10 does describe ) )

a circular biconcave shape in casecg&0, together with an because Evans and Fung's experimental expression repre-

appropriatepg value in the range determined from Egs. SeNts an averaged shape over 50 RBCs, and indeed, a RBC
(2.20 and(2.21) and with the same shape as the present theoretical result has been

observed(see, for example, Cell 2 in Ref24]). Further-
Pc o more, the cyR, value deduced here agrees well with
fo tanys(p")dp’ <0, (222 ¢,R,=—1.62, which has been obtained from the three geo-
metric relations for vesicles using E(.24 as an approxi-
which is fromz(0)>z(p,). The above analysis indicates that Mate shape solution for the RBC she@8]. It is therefore
under the constraints of Eq&2.19—(2.21) the shapes gen- feasonable to use the present theoretical shape(2Etp,
erated by the solution are uniquely determinectpgndpg.  With pg=0.620¢ and ¢,=—0.53 um " as the initial shape
Instead ofpg, the shapes are also determineddgyand the  for the polygonal shape transformation.
vesicle surface aref,, because we have the following rela-

tion betweenA, and pg : lIl. SECOND VARIATION OF THE BICONCAVE
VESICLES
Pc pP
Ao=4m dp. (2.23 As described previously, we assume that the initial shape
0 1-[pcoln(p/pg)]?

of the vesicle is the circular biconcave shape defined by Eqgs.

We choose the biconcave shape as an initial shape for th(@‘S)li %2)5222 (r%1(()3)rt\évcljﬂ:ht:tetrf1lgenc11e\ﬁlt)ur2ieO{;?ég B|s ?:ro“rj]stant
study of the polygonal shape transition. This choice is moré " P '

reasonable than that of a modified Cassini equation in Re]y.\'hIIe the membrane volume is decreased during the polygo-

[8]. Since the shape transformation has been observed gl shape transformation of Ilppson{é’g. Thush andap n-
vesicles derived from human RBC ghosts after digestion o q.(3.2 are regarded, respectively, as a Lagrange multiplier

surface membrane proteins by trypsin as well as in Iipo-iandfsrcgﬁgﬂh??;;ggﬁzz}%d';fr?(;er?g\?é \'Svr?]';n :]so';]hzee:jorlv-
somes, we fit the biconcave shape to the human RBC shapg.g X

. : : values, because these two quantities are related to each other
To do this, we employ the experimentally obtained shap(i ! .
; see EQ.(4.24]. Of course, the vesicle shape can also be
equation for human RBCs by Evans and Fg], deformed by changing spontaneous curvature; however, to
1 02 p\2 4 examine the effect of osmotic pressure difference, we as-
2p)= 1‘(;) b € H
Cc

Pc

£
Pc

A+B sume thatc, is constant in the present calculation. This as-
sumption is reasonable because the circular biconcave form

of the side view was maintained during the polygonal shape

where p,=3.91 um, A=0.81 um, B=7.8 um, and C= transformati_on processes of liposonj&s _

—4.39 um. The shape is shown in Fig. 3 by a solid line. This e consider a slightly deformed surface defined as
shape possesses a maximum afp)=1.28 um at - .

ps=0.70.. We fit the shape of the present solution Eq. Y'=Y+q(s,¢)n, 3.1
(2.16 to Eq.(2.29 at p.=3.91 um, and obtairnpg=0.62p,

and c,R,=—1.67, whereRy= JAy/47m and A,=126 um?.  wheren is the outward unit vector normal to the initial sur-
The best-fitted curve is also shown in Fig. 3 by a dotted lineface of the biconcave vesic(s, ¢), andq(s, ¢) is a suffi-
and is in good agreement with the experimental RBC shapeiently small and smooth function. Accordingly, from Eq.
in whole range fronp=0 to p=p,, but with slight deviation. (2.1, the shape energy of a deformed vesicle, which is ex-
The deviation does not have a serious meaning in principlepanded up to second order with respecttas

N
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F=F2+ 6VF,+ 8@ Fy+ApVo+Ap(sVV+ 62V) r1,=r,=r;,=r3-0,
+ANAGHN(SVA+ 5PN, (3.2 . , cosp
0 _ I=—pcosy, T=—r-. (3.9
whereF {9, V,, andA, are the bending energy, volume, and P

area of the initial biconcave vesicle, respectively, @l o yoqiits can easily be checked in case of spherical

2) . . -
and 82 correspond to the first and the second vanations, . <i-jes As shown in our previous pafie8], let c,=0 and

respectively. b—1/R.: E o ;
. " . . b= ; Eq. (2.10 becomegp=Rgsinyg, which represents a

For the calculation of the quantities on the right-hand side 0 ; AT S

of Eq. (3.2, the most straightforward and convenient ap-Sphere with radiu®,. Substitutingo=Rgsiny into Eq.(3.9)

) yields the same expressions of the Christoffel symbols for
proach has been shown by Ou-Yang and Helffit; they the sphere as Eq42) in Ref.[17], if we setRy=1. This is

have derived the general expressions for the first and thg, ../ \<q the general coordinate 6=y andv = ¢ was used
second variations of the shape energy. By putting the gener Ref. [17], whereasu=s=Ry andv=¢ in the present

coordinatesu=s andv =¢, and using Egs(2.5—(2.7) and ;
Egs.(2) and(3) in Ref.[17], we have the following geomet- Eng g)r the sphere. We can now calculate all the terms in

fic quantities of the initial vesicle: The first term on the right-hand side of E§.2), F g°>z i)s
VRV . . given by that of Eq(2.1). However, we do not dedudef”,
Y1=05Y=(cos) cosp,cosy sing, sing), because we are interested in the variation of the shape en-

vV ergy, SF=F—F ). The second term in Ed3.2), the first
Y2=34Y=(=p sing,p c0$,0), variation of the shape energ§"F,, is zero, because the
oo oo o 2 biconcave vesicle, Eq2.10, is an equilibrium shape under
9117 Y1 Y1=1 9127 Y1 Y2=0, 920= Y Y= 0%, the condition ofA)%f))\:O. The third term, the second varia-
tion of the energys?F,, is [see Eq(39) in Ref.[17]]
g=detg;)=p> d b d
A=Y,XY,/\Jg=(—sing cosp, —siny sing,cosp). §PFy= 35 (9%[2K(H +¢o/2)(8H®~BKH +coK/2)
3.3

+2K(K—2H?)(K+2coH +2H?)
_ +2(kI9) a0, VO(H+col2) (2HgT =KL )]
%ﬁ%)- (3.4 — (KING) dn{ O(H +co/2)[g" 3;(L g™
—Lig "9 T = (2Hg" =KL I}

From Egs.(2.6) and(2.11) we also have

dy dydp
ds dpds

From Egs.(3.3) and(3.4), the second fundamental forms of

the surface are +0;9;{k(H +c¢/2)%g" + 2K(H + ¢o/2)
. - sin X (KL"—3Hg")}—2k(K+coH)qg'Vig;
Lt 2V Y e, ( 3Hg )} —2k(K+coH)qg! Vig
+(k/2)(g'1Vq;)?)dA, (3.10
L12=ﬁ~asa¢\?=L21= 0, whereq;=¢;,q and V;q; is the covariant derivative aj; de-
R fined by

Since g4»=L1,=0, g”=gl_11, 922=g£21, L11=L1—11, and

L22=L .1 the mean and the Gaussian curvatures can be ob- After some calculation, we have

tained as
_ 58PFp=k 35 [02ch(2¢o %p~ 2= 2x3—4x2+ 3)
H=lgiiL--=ﬂ+@ (3.6)
o2 R e
ane +agei(esp 220 Y
. . 2 2 -4 2 -2
K=%’lj (SI://"'CO): 37 +3055+ 30540 *+0sep 21dA, (3.12
wherex=In(p/pg), Us= de0, Uy= 40, Uss= 720, =50,
respectively. The Christoffel symbol¥; defined by[26] and sy = dsdy0.
The other important terms in E¢B.2) are the area and the
F!‘j =394(d:0;+ 9,9 — 910;;) (3.8)  volume variations, which argsee Eqs(19) and(20) in Ref.
[17]]

also appear in the general formula for the second variation of

the shape enerdgee Eq(39) in Ref.[17]]. Substituting Eq. . fﬁ _ 14 2
(3.3 into (3.8), we have oA= ¢ (=2Hq+2g"g;q;+Kg")dA (3.13
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and 9 L
+—5——=0, 4.2
ad? dUyg “-2
8V= fﬁ (q—HQg?)dA, (3.19
where
respectively. Using Eqs3.3), (3.6), and (3.7), we reduce
i oL
these two equations to £=2kpcg(2052p‘2—2x3—4x2+%)q+App
Ap(8PV+62V)=Ap jg [9—co(x+3)g*]dA — 2AppCo(x+ 1)g—2npey(x+ 1) + 21 peix(x+ 1),
and
aL
——=[2kpcg(co *p~2=2¢5 "p )+ p 0y, (44
NSVA+ 62 =\ (= 2o+ b+ 3(aE+p %)) s i ’
+c2x(x+ 3)q2ldA. (3.1 —2kp 1y, 4.5
aq ’ '
Substituting Eqs(3.12, (3.19, (3.16, and §YF,=0 into *
Eq. (3.2), we obtain the variation of the shape energy in the oL
form =
90ss KpQss, (4.6)
SF=F—F0=ApVo+\Ag+ 3@ [Ap—2\Co(x+3)]qdA 41
+k jg [q2c3[2002p2—2x3—4x2+% L —kp3 4
Gy, P e 4.7)

—(Ap/kcd) (x+ 3) + (MK X(x+1)]
can be obtained from Eq3.17). Equation(4.2) is a linear
partial differential equation fo(s,¢). From Eqgs.(4.3)—

X
1 .-2 -2 _y2_ " 2
2C P X735 1+(M2kep) (4.7), we find that the general form of the solutiggs, ¢) is

2.2
+qu0

+a5celco ’p 2= 2¢q *p T+ (NM2keh) ey Zp 2] »
a(s.¢)= 2, fr(s)come, 4.8

2

+3095+ 30540 4+ 020 2 dA. (3.17

wheref(s) satisfies some linear fourth-order ordinary dif-
The above equation includes the first and the second variderential equations. It is obvious that E@t.8) exhibits the
tions of the shape energy with respectd¢s, ¢) that de-  feature of the polygonal shape of the vesicle; however, there
scribes the shape deformation normal to the equilibrium surare no conventional methods to solve a fourth-order linear
face induced by the increase in the osmotic pressurgifferential equation in general. For the present case, the nu-
difference and in the surface tension from zeroAtp and  merical analyses of the differential equations are also diffi-
from zero to\, respectively. Thus, Eq3.17) is the basic  cult, because they cannot provide a clear and complete be-
formula for the study of the instability and deformation of havior of the solution. For these reasons, we use an
the vesicles. approximate but very efficient approach to solve this prob-

lem.

IV. POLYGONAL SHAPE TRANSITION Instead of solving the differential equations figg(s), we

. . assume the approximate solutiona(fs, ¢),
A deformed shape should be an equilibrium one at which

SF in Eq. (3.17) is minimum. In general, this minimization

_ 2
of 6F with respect toq(s,¢) can be carried out using the a=p°B(d), (4.9
well-known Euler-Lagrange approach; E§.17) can be re- 5. o ) )
written as a Lagrangian integral where p° in the above solution is determined by analyzing

the so-called index equations associated with the differential
equations foif ,(s); the solution can remove the singularity
6F:f L(A(s,#),0s,0ss,0s¢,0¢,0gg)dS dp, (4.1 of 5F in Eq. (3.17).
Using Eq.(4.9), Eq. (4.1 is reduced to the Lagrangian
and then the Euler-Lagrange equation is integral with respect t@8(¢),

L 9 dL 9 dL # JL 9 aL

—_— + —_—
dq dsdds dp Iy ISIp sy  IS® IUss

2
F= | U8By B0, (4.10
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where g,=(d/d¢) 8 and B,,=(d/d¢) B, . Substituting Eq.
(4.9 into Eq.(3.17 and neglecting the two constant terms,

ApV,, and\Ag, we have an expression far(3,8,.8,4) as

Pc
L= f {2M[—2p%co(x+3) B+ 5(4pcoS Y+ p?B7)
0
+ ptedx(x+1) B2+ Ap[ 2p? B~ pico(2x+1) 8]
+2k[4— c3p?(2+6x+ 14x?)
+cop(3+2x2+8x3+ 12x*)] B2

p

+2K[ 2+ cp?(1—4x?) 1 85+ KBS 4} o5

dp. (4.11
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— P
A0=2f “(plcosp)dp=18.5 um?, (419
0
a7 2.2 2
Ar=4| {p[4—cip?(2+6x+14x2)
0
+cgpt(3+2x2+8x3+ 12x*) J/cosytdp
=81.0 um?. (4.19

A2=4Jpc{p[2+ cgp2(1—4x2)]/cosp}dp=116 wm?,
0
(4.20

We have used the basic relations given in the preceding seby using the geometrical parameters of RBCs described in

tions, such as Eqg2.6), (3.3, and (3.4), in deducing the

above equation. The Euler-Lagrange equation, Bd®), is
then reduced to

A pw;— Co)\W2+ [)\(W3+ CSZZ) —A pCyzy+ kAl]ﬁ

— (\W3+KA) Byt KAoBysss=0, (4.12

whereB,4,=0d*Bld¢*, andw,, w,, W, ;, Z, Ag, A;, and
A, have been obtained as

W1:2J0pc(p3lcoa,0)dp=155 um?, (4.13

Wz=4fpc[p3(x+ 3)/cos]dp=239 um*, (4.14
0

Pc
w;=8 f p3cospdp=352 um?, (4.15
0

Zl=4fpc[p5(x+ 3)/cosyldp=2.85<10° um®,
0
(4.16

22:4fpc[p5x(x+ 1)/cosp]dp=1.63x10° um®,
0
(4.17

Sec. Il as those of the initial biconcave shape.
For the further calculation of the polygonal shape trans-
formation, we put

B=Bo+ BmCOMd. (4.2

Substituting Eq(4.21) into the Euler-Lagrange equation Eq.
(4.12, we have

Apwy—ApCyz1 Bo— CoMW,+ N (W3+C52,) Bo+ kA Bo=0,

(4.22

{kA;— ApCozy + N (W3+C525)} BmCOSN
+ (AW + kAy) m2B3,,cogned+ kAm? B,cosned = 0.

(4.23

Equation(4.22 gives the Lagrange multipliex as

_ Apw;—Apcyz; Bot kA Bo
A= 2
CoW2— (W3+¢5Z2) Bo

(4.29

This equation shows the relation between the osmotic pres-
sure difference and the surface tension in the shape deforma-
tion. With this result and Eq(4.23, we obtain the most
important relation,

(A_om4+ Aom?)[ CoWu— (Wa+ C5Z,) Bol + A (CoWa+ mPw; Bo)

ApE_k_gz

3 2 5 z 3
Co CoW1(W3+ M Wy) + Co(W12Z,— Z3W5) — CoZi W1 M“ By

: (4.25
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100 ———————————1 osmotic pressure difference is a monotonic increasing func-
L 0 AV/V,=5x1072 ] tion of m except form=2. It is interesting to note that in the
L A AV/V=107 . case of the polygonal shape deformation of a spherical

vesicle induced by pressufé7,19, the threshold pressure
exhibits a monotonic increase with as well.

Hotani[7] has experimentally shown that the increase in
the concentration of a variety of reagents such as NacCl, KCl,
and CaSQ causes the polygonal shape transition of the bi-
concave liposomes. From the van't Hoff I14&7], the os-
motic pressure difference across a membrane separating two
T S — ideal, dilute solutions can be related to the concentration dif-
ference of the solutions as

I OApm

FIG. 4. Osmotic pressure difference foith polygonally de- AP=Pour Pin=RT(Cou Cin) =RTAC, 52

formed vesicles aAV/Vy=5x10"2 and 103, The threshold pres-
sure difference\p,, is also shown. Here we takekc3 as the unit
of pressure.

whereR is the universal gas constant amds the tempera-
ture. It is obvious that the increasedp,; increases\ p. This
finding is consistent with the present theoretical prediction;
— 3. . . . however, Hotani has observed only elliptical, triangular,
w‘hereAp=;A_p/kco.|_s the dimensionless osmotic pressuresquare, and pentagonal shapes, which correspomd=2, 3,
difference(Ap is positive because afy<<0). From the con- 4 and 5[see Figs. )—2(e) in Ref.[7] as well as Fig. 1

servation of area, The reason why the vesicle witm=1, whose shapes are
5 shown in Fig. %a), has not been observed is that the thresh-

5A=f d¢f —p{—ZPZCo(XJF%)(ﬁoJF BmCOSN) old pressure difference fan=1 is negative in the present
cosy calculation, as shown in Fig. 4. In addition, the reason why

1 2 2, 2 252 deformed liposomes havinp>5 have not been observed is

+ 3 [4p°c0S (B Brieosng)*+ m*p” B sinfme] that the threshold pressure lies betwekps and Apg in

+C5p*x(x+1)(Bo+ BmcosMe)?}dp=0 (4.26) Hotani's experiment_. It is therefore expected that the lipo-
somes havingn>5 will be observable abov&p>Aps. The
experimental confirmation of this prediction will be an inter-

and Eqgs.(4.13—-(4.20), we obtain esting issue in the future.
5 1 5 ) - Next, we discuss the development of the shape deforma-
—4W,CoBo+2W3( Byt 3 Brm) + M W1 B+ 252,85 tions above the threshold presswp,,. For this purpose, we
622,820 4.27 calculate the compressive ratio of the volume of the vesicle,
072Fm™ ' AV/V,. In the linear approximatiom\ V/V, can be obtained
which permits us to determing, as as
Bo=Ba(Wy+ mPw, +Ciz)lAwyco, (428 sy oo
where we neglect the terms @§. This equation is used to V_o: Vo
numerically analyze the polygonal shape transformation, and .
it is obvious that forcy<<0, B, is always negative, showing 2 (2 Pc p
that the shape transformation is the compressive process of - V_o 0 do 0 cosy (Bo+ BmcoSN)dp
the vesicle. We note that E.28) is only valid for a small
deformation of the vesicle. 2
A w180, (5.3

V. DISCUSSION
wherew; is given by Eq.(4.13. The top view of amth

First we discuss the threshold osmotic pressure differencgolygonally deformed vesicle is calculated using E@s9)
for the polygonal shape transformation. The shape transfotynq (4.21) and is given by

mation occurs above the threshold osmotic pressure differ-

ence p=pct pi(Bot BmCOIN). (5.4
Ab = (k2 Wo(m*Ag+m?A,+A) In Fig. 5, we show the development of the top view of the
Pm=(—kCp) C2W, (M2Wy + Wa) + Ca(WyZy— Z3Wy) deformed vesicles fam=1 to 5 at some\V/V, values. The

corresponding\ p values are also shown in the figure, which
(m=1,2,3,...), (5.2 are computed from Ed4.25. We find that in a mode af,

Ap slightly increases with increasifd V/V|, as shown in
which is obtained from Eq4.25 by putting 8,=0, because Figs. 4 and 5. This behavior is consistent with the experi-
at the threshold botf8, and 3, are zero. Using the numerical ment[7].
values in Eqs(4.13—(4.20), we can calculate E(5.1) for The agreement between the theory presented above and
m=1,2,...,10 and show the results in Fig. 4. The thresholdhe experimen{7] shows that the basic approximation for
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2824
Ap=-4.311 . Ap=14.83
AV/V,=-1.980x10 AV/V,=-4.516x10"
=1 m=3
Ap=—4.292 . Ap=14.96
AV/V,=-5.069x10 AV/V,=-0.01156
Ap=-4.236 Ap=15.40
AV/V,=-0.02028 : 3 / AV/V,=-0.04624
(a) (c)
Ap=23.96 A
AV/V,=-2.931x10"° _ p=17.77
me? m=4 AV/V=-6.734x107°
Ap=24.42 Ap=17.94
AV/V,=-0.1724

AV/V,=-7.503x10"2

Ap=18.50
/ AV/V,=-0.6896

Ap=25.95
AV/V,=-0.03001

(d)

Ap=23.05
AV/Vy=-9.5868x107°

(b)

Ap=23.11
AV/V,=-6.136x10"

Ap=2332

/ AV/Vy=-0.02454

(e)

FIG. 5. Top views of circular biconcave vesicles with several polygonal deformati@nssymmetric shapen=1), (b) elliptical shape
(m=2), (c¢) triangular shapgm=3), (d) square shapém=4), and (e) pentagonal shapém=5) as a function of the osmotic pressure
differences in units of-kcg and the ratio of the change in the volumey/V,.

g(p,¢) in Eq. (4.9 is reasonable. Equatiof.9) states that vesicle is maintained in the circular biconcave shape, as ob-

the deformation from the initial biconcave shape quadratiserved in the experiment.
cally increases with increasing distance from the center of Here, we would like to comment on the previous theoreti-

the vesiclep. This leads to the fact that the side view of the cal analysis for the polygonal shape transformation by
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Sekimura and Hotar{i8]. They have employed the Canham wherez is the valence of the ions in the solutions afds
model, which is a special case of the Helfrich spontaneouthe Faraday constant. We find from E@.2) that at the
curvature modelc,=0), have not considered the effect of initial state of the liposomes,,, is equal toc;, for Ap=0,
the osmotic pressure difference, and have used the modifiddit with increasingAp, c,,; becomes larger thagy,, which
Cassini equation, which is not a solution of the shape equiads toc,>0, as evident from Eqg5.5 and (5.7). Since
tion for axisymmetric vesicles, Eq2.4). We thereby point ~ cylindrical vesicles have,>0 [17], ¢, is another driving
out that their theoretical results cannot be directly comparedrce of the cylinder formation process. From this discus-
with the experimental results of Hotafif]. For example, Sion, we suggest that for the analysis of the large deforma-
Sekimura and Hotani have shown that only the vesicles wit{ions shown in Figs. @—(2) in Ref.[7], the changes ig, as
m=2 deformation have the minimum shape energy atVell asAp must be considered simultaneously.
AV/V,~1073. On the other hand, in our present calculation,
all experimentally observed deformations with=2-5 are
found at the samaV/V,. Furthermore, they have not given  We have analyzed the polygonal shape transformation ob-
the result of then=5 deformation, which has been observedserved in liposomes on the basis of the Helfrich spontaneous
in the experiment7]. curvature model. We show that the analytical solution of the
Finally, we briefly discuss the other shapes of liposomeshape equation for axisymmetric vesicles represents a circu-
found in the experimerit7] that have not been explained in lar biconcave discoid foc,<0, and thus use the solution as
the present calculation. For example, the strongly deformegn initial biconcave shape. We then calculate the shape en-
shape form=2 is a peanutlike or a dumbbell-like forffrig.  ergy of the deformed vesicles by taking account of up to the
2(f) in Ref.[7]] and further grows to become a cylind&ig.  second variation. From the minimization of the shape energy
2(1) in Ref. [7]]. For the description of such a process, thein terms of the Euler-Lagrange approach, the threshold os-
present calculation, based on up to the second variation gfiotic pressure difference fanth-polygonal deformation is
the shape energy, is not suitable, because the expression {@rived and the shapes of the deformed vesicles are dis-
the shape energy is valid only for small deformations. How-played as a function of the osmotic pressure and the change
ever, we stress that a peanutlike or dumbbell-like vesicle cam the volume of the vesicles. We confirm the experimental
be described by the solution of E.10 in the case of evidence that the increase in the osmotic pressure is the driv-
Co>0. In a recent pap€25], it has been shown that there ing force of the polygonal transformation. In the experiment,

VI. CONCLUSIONS

exists a relation betweesy and the membrane potentld),,  further transformation from the polygonal shapes to cylinder-
like shapes has been observed as well. The present theory

CO:quM +c§)°), (5.5) cannot be applied to the analysis of this transformation, be-

Kk cause the theory is valid for small deformations of the

©) o vesicles from the biconcave shape. We therefore discuss a
wherecg” takes account of the asyznmetg/:z distribution of mechanism of the transformation to the cylinders, and indi-
the molecules in the bilayee,;=10"" dyne™ [28] is the a4e that the positive spontaneous curvature as well as the

piezoelectric constant of the membrane, and the membrang.rease in the osmotic pressure are the driving force of the
potentialU,, is defined as transformation.
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